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FOREWORD

This report wvas prepared by Dr. Dennis 5. Berry under
the direction of Charles Fairhurst of the School of Mineral
and Metallurgical Engineering, University of Minnesota, | '
Minneapolis, Minnesota under Contract DA-25-066-ENG 14,765 ;
with the Missouri River Division, Corps of Engineers. !

Dr. Dennis S. Berry of the University of Nottinghanm,

Nottingham, England was principal investigator for this n
research. '

L. B. Underwood, Division Geologist monitored this
research contract for the government; K. S. Lane wvas Chief ]
of Geology, Soils and Materials Branch, and J. O. Ackerman E
wvas Chief of Engineering Division of the Missouri River
Division, Corps of Engineers during this investigation.

Funds were provided by the Office, Cnief of Engineers,
Depar‘ment of the Amy under Military Construction and
Investigational Programs, O&M, 7.80.12A QB-1-02-007.

Based on the findings of this report continuing
research is being sponsored by Army O&M funds.
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PREFACE

This report is part of a continuing study into Methods of
Determining In-Situ Rock Stresses at Great Depths. Results of the
first part of the study were reported in Technical Report No. 1-68,
bearing the title underlined above and published in February, 1968
by the Missouri River Division, Corps of Engineers, Omaha. In that
report it was noted that all current techniques of in-situ rock stress
determination were based on the assumption that the rock behaved as
a linearly elastic, isotropic, continuum. Since many rocks are not
isotropic it was felt that an analysis of the influence of rock anisotropy
on the accuracy of the techniques was needed. It was therefore decided
to attempt solutions to problems in whicn the rock was considered to
behave as a transversely isotropic elastic material. A transversely
isotropic material is one for which the elastic properties are invariant
with respect to rotations about a single axis only in the material. Five
independent elastic constants (see Technical Report I-68 p. 6) are
necessary to define a transversely isotropic material compared to two
for isotropic material. Bedded or laminated rocks such as shales and
gneisses appear to be fairly well described by the transversely isotropic
model. The use of more sophisticated models, involving a greater number
of physical constants, -was considered unwarranted since experimental
determination of the constants would be difficult and the mathematics
quickly becomes intractable.

The theoretical solution for the Stresses on the Surface of a
Circular Hole in an Lifinite Transversely Isotropic Elastic Medium due
to Generai Stresses at Infinity and Hydrostatic Pressure at the Hole, was
obtained by Dr. D. S. Berry, Department of Theoretical and Applied
Mechanics, University of Nottingham, Nottingham, England, and ir
presented in Appendix 1 of Technical Report I-68. The solution e'.@ables
the influence of rock anisotropy to be considered in the analysi-. of the
hydraulic fracturing technique of stress determination.

This report, The Theory of Stress Determination by Mear s of
Stress Relief Techniques in a Transversely Isotropic Medium , also by

Dr. Berry, presents the analytical expressions for the strains and dis-
placements at the surface of a circular hole in an infinite tri nsversely
isotropic elastic medium due to general stresses at infinity, This solution
permits the influence of rock anisotropy to be considered i i the stress-
relief (overcoring) techniques.

Investigation of the effect of rock anisotropy on stri:sses in an
elastic inclusion, the theoretical basis of the remaining mportant class
of stress-determination methods, is now in progress and will be published
in a subsequent report.

C. rairhurst
September 6, 1968

st s il







THE THEORY OF STRESS DETERMINATION BY MEANS OF
STRESS RELIEF TECHNIQUES IN A TRANSVERSELY
ISOTROPIC MEDIUM

D. S. Berry

1. Introduction

The use of the stress relief technique requires theoretical
knowledge of the radial displacement in a long hole as the stress is
removed by overcoring or other means. Panek (1966) has pointed out #
that relief of stress in the axial direction affects the radial displace- ?
ment in an isotropic medium, while Berry and Fairhurst (1966) have ‘
incorporated this effect in calculating results for a transversely ;
isotropic medium in which a hole is drilled in the plane of symmetry % |
or normal to it. This report extends those results to an arbitrarily
oriented hole drilled into a medium with any homogeneous state of
stress.,

The author's previous work on the stress around a hole in a § r
transversely isotropic medium (Appendix I of Tech. Rpt. No. 1-68 '
by C. Fairhurst, referred to here as I) is drawn ugon freely and the A

same notation is adopted. The method of solution is based upon the i
work of Milne-Thomson (1962) on "anti-plane" strain,

2, Displacements due to antiplane strain

As in I, the plane z = 0 defines an arbitrary cross-section
of the hole, the x - axis is chosen to lie in a plane of elastic symmet:y
(the lines of intersection of these planes with the plane of the paper
are indicated in Figs. 1 and 3 ) in such a way that the angle ¢ that
the plane makes with the y - axis satisfies the condition 05 ¢ £ n/2
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The coordinate system (x,y,z) is also referred to as

(x1 ,Xo,X%.). The 0x~ direction is defined as the axis of el}astic
symmetry (Fig. 3) and the direction cosines, a, =cos (x,0x, ) of
the x, - coordinates with respect to the X -coor&inates are jgiven
by I(f. 1). The stress-strain relations irf the X,-system are given
by I(1.2) and I(1.3), while the stress-strain relations in the x; -
system are given by I(1.5) and I(1.6). The regional stress tensor
is given in terms of the principal stresses by I(1.4).

Section 2 of I shows how the stress distribution for an
antiplane problem can be obtained in terms of three analytic

functions

Wv(z\) . v =1,2,3

Z = X+
v vy’

where the )\ are roots of the characteristic equation f(\) = 0 given
by 1(2.17) add 1(2.18). The stress components are actually given
by the expressions I(2.23): -

3
lY 2 2 \i
o = Zv’;ll lev(Zv)+ A, WV(Z\)] ,
32
oY ) %\.;1 [ Wv(zv)J' Wv(zv) I \
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= -1) Y W (2
Txy ‘v'__'l[ vav(z\) * Jl‘\)W\)(z\)) I
3
e 4\’;.1 “\a“vwv (z)) A W) T (2.1)
3
N v — . =
vz ~ -‘vélluvwv(zv) +“va(zv)] ’J

while o, is obtained from-equation I(2.5) :

e =k..oc + k
X

- 13 o + k,,0 + k

23 % 339 34 yz ° (2.2)

The constants My + Wy o W, are given by I(2.20).

Substitution of the expressions (2.1) and (2.2) in the relations

I1(2.6) (valid for constant €, ) gives the following expressions for the
strain components:

3
3 SR

=

% v;I [ lewv (zv) ¥ lewv(zv) ] +K1(':2 (2.3)
3

eY =v5=:ll LZva (z\) * Lva\) (zv) ] +K2 €2 (2.4)
3

2 ny =v§1 [ LGva(zv) + L6 Wv (zv)] , | (2.5)
3

ZYYZ =V‘Z=I’1[ L4va(zv) * L4vwv(zv) ] +l(‘lez' (2.6)
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Xz [ Lvav(zv) * I5\)"2} (;v) I 2.7)

L

v=1
where
4L = ¢ xz + -4
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2
Ay, = 4h, * hyp T g4,

ALy, = - tgghy * Legh My - (2.8)
4L, = 4. . A% .. -1

4v 14 v 24 44“\: !
Lg, = ~Lggh, * L5 A M,

and the "’rs and Kj are given by I (2.61).

If we write Vv(z = J W (z )dz , then integration
of (2.3) with respect to "x and (2 V4) Vwith'respect to y yields
the following two expressions for components of displacement

3
u =\£1[ lev\)(z ) +L1vvv(zv)] + 1(1 X 1 fl(y) (2.9)
3 - -
v=y iv(z)+—LA’V (Z)ju( + £, (x) (2.10)
v¥1l )‘v vV oy 3 v vJ 26.Y 7 1 ’
v

where f_(y) and f2 (x) are arbitrary functions. An expression

for 2y = 3u/dy "+ dv/3x can be found from (2.9) and (2.10)

and co?r%arison with (2.5) shows that fl(y) and f, (x) are constants
(which may be taken as zero since they correspond to rigid body motion
only).

Since we are considering deformations which are independent of
z, we have that
4




dv/3z =3u/fdz = 0
and so
W oW
2 = —— = ==
sz oY and Zsz x °

Then integration of (2.6) and (2.7) give

3 -

L L —_
wel [y @)= T (@) +Key i 0 @)

v=1 Y A V.oV

v
and
3

w=v2=:1 stv (zv) + stv (z ) 4 f4(y) (2.12)

Hence, apart from constants, which may be ignored
f3(x) =0 , fq(Y) = K,&,v .

Also, we find that

— "\ L, 4y AL,
L. - = b —e———
Sv xv 4 )‘v v d(Z) ()‘v)

where dz(k) and ds(k) are given by I(2.18) and this is identically
zero by the definition of M, in I(2.20).

Collecting the above results we have the following expressions
for the three components of displacement:

3 .
u=\,=1 levv(zv) 4 levv (zv)] + Klezx,
5
}3' r1‘2\) E2\) A
v= /L — V(z)+ — V (z)] +Key,
v=1 L)‘v N \Y 2
v
5
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(2.13)

3. Formulation of the problem.,

In the stress-relief method, diametral displacement indicators
(possibly strain-gauges also) are inserted at a section of a hole
sufficiently remote from its ends for their influence to be negligible,
the surrounding stress is relieved and changes in diametral measure-
ments of the hole are recorded, possibly changes in axial strain also.

If the regional stress components are denoted by ( °1‘)o , as in Section 3
of I, we can describe their removal as the application of stress com-
ponents - ( oﬂ) o + and the boundary conditions can be stated as
follows:

o = 17,=1_.=0, onr=a ,
(3.1)

= - a
c:1 j (c:rlj )o t
Now these conditions are just those of I(3.1) apart from the minus sign
in front of (o )° . In addition, it is specified in I Section 3 that
€, should be constant everywhere: if we can show that that condition
is satisfied in the stress-relief problem then the stress functions for
the solution of 1(3.1) can be adopted for the present problem, merely
with a change of sign. It can be demonstrated as follows.

Since we are assuming that the material conforms to the
assumptions of classical elasticity we can invoke the principle of
superposition and, in particular, we know that the chronological
order in which two or more constraints are imposed does not affect
the resulting elastic field. Consequently, the axial strain in a stress-
relieved sample is the same as if the hole were made after removal of
the sample instead of before. Now, at a cross section remote from the
ends we can safely assume that the in situ drilling produces no axial
strain., Also, drilling a hole after removal produces no axial strain
because the sample now has no applied stresses capable of producing
any deformation. However, the final state is the same in each case,
so the axial strain is just that which is produced by relieving stress
in the sample without a hole. Thus the axial strain is not dependent

6




on the presence of the hole and so is independent of position !n
the rock.

If we write out the second set of conditions in (3.1) in non-
tensor notation, using Oyr eoes le, ... for the regional stress
components, we have at «

9 = =0 . oy=-02, o, = -0,
Txy=-712' yz=-723’ zx | 31

If these values are substituted in (2.2) we obtain the axial strain
in terms of the regional stress components, valid for all xand y
since ez is constant:

€& °° “‘13 1 P Kpg0y * kg0y * KyuTog ). (3.2)

Elimination of e between (2.2) and (3.2) leads to the
condition

k)33 +0,) 7 Kys(0, 40) + Kyglog +0)) +kgylrygt 7,0 =0
(3.3)

which is just I(3.2), apart from the change of sign giving g =l= (crx)l

etc.

4, Solution of the general problem.

The conditions to be satisfied are the values of the boundary
tractions and stress components at infinity, given by (3.1), together
with the general condition on the stress components given by (3.3).

The complex potential method gives stress solutions in the
form (2.1), apart from the component o, which can be obtained from

relation (3.3).

The solution of I(3.1) under condition I(3.2) gives stress
components denoted by (q,); etc. in I and is obtained from the
complex potentials denoted by (W (z ) ]1 Clearly the solution given
by complex potentials

7
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WV(Z\) == Wv(zv) 1, (4.1)

will give stress components A (c:x)l everywhere and oij = -(o“)o

at infinity in particular, thus satisfying the conditions (3.1) and (3,3).

Thus, from Section 4 of I the stress-relief solution is given by
(3.2) and (3.3) and the expressions

*
-Wv(zv)=avo+wv(zv), v=1,2,3, 4.2)
8 C.+ vy C,+u C
W*(z) - w1 ZJ'V 2 v 3 4.3)
Rl 2¢“m_(¢)
v
zv=mv(C)=a(YvC+6v/C). (4.4)
or
z +[z2-a2]
( = X Y (4.5)
zaY\)

The various constants in (4.2) to (4.5) are given by equations I(4.6) to
I (4.9), with the addition

2 [ I 4
ghc i R N
v v
Now, from I(4.11) we have that
6WC1 + Y\NCZ 4 uwc3 =2a(av06v+Av) (4.6)
with the Av given by I(4.12) , while it is easy to show that
' 2 2 2 %
¢m (C) = [zv-a (1+1))] 4.7)

Substitution of (4.6) and (4.7) into (4.3) leads to the expression




r-m W - -.1

* Vo 6\) .' Av %y
Wv (zv) = ——26—- —2——?}— -1 .. (4.8)
v (z -a”) |
v sl
From (4.2) we then find the result
Av Av zv
- = % - — ] 1 )
W) =t - )+t o) > (4.9)
y) v (z= -a
v ¢
and so by integration we find that
" A A
: .l - 1 SNy, TR A
vv(zv) v wv(zv) dzv e (avo 6\) ) Zv t (avo-' 6\) )(zv av)

(4.10)

For the stress-relief problem we require the radial displacement
at the boundary of the hole, r = a. At the boundary

z =x+\y = a(cosf + A sinf)
N v v

and v

z2 -az = az(cose-t A sinE))2 - az(l 4 xz) i
Vv \Y) \Y \Y

= -a2 (sinf - )\Vcose )2

so that
(z2 - az )% = ja(sin - A cosh).
VERRRY v

(The choice of sign here is immaterial because of the symmetry of the
solution).

Substitution in (4.10) leads to the result forr = a
R 6, -i8
Vv(Lv) a(a\)o Y, e Ave ). (4.11)
or

Vv(zv) = -a | (aonv - Av) cosf - 1(a\)oy\J X Av) sing ]. (4.12)
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To obtain the radial displacement from these expressior.s and
the displacement expressions (2.13) we note first that

u. 4 iu_ = e-16 (u+1iv) . (4.13)

8
From (2.13) it then fgllows that

: L _ L, _ _
ur+1u =e_1ej 2 ( (le+1—2—v)vv(zv) X (L1v+i Y )V (2 ) ] :

8 v=1 )\\J -)\ AVARRY)
v
_ | (4.14) ’
ae, (chose : 1K251n6)j.
Use of (4.11) then gives the result
H L
e - 2y _p o210
u. v iug a) . [ (le iy )(aonv Ave )
v=1 v
7
S Y ey (-
4 (leai - )(avoyve Av) ] ]
i |
+ce ¥ K cososiK,sing )'j} (4.15)
b4 1 2 ) :
We now put
1 Lk L
= A =) - 1 A
GV—LI\) +1 X g Hv le i X (4.16)
v v
and take the real part of (4.15) to cbtain
u
—‘;L = A¢ < B¢cos 26 - C¢sin26 ) (4.17)
where 3
A¢= Re 2 (AVHV = aonva) ) eZ(K1+ Kz) .
3
B, = Re\);1 (A,G, -a v H)- ke, (K - %), (4.18)

10




Cquations (4.17) and (4.18) give the diametral expansion of
the hole (wnen the regional stress is relieved) in terms of the regional
stress components (through the 44,0 and ¢, ) and the elastic constants
of the medium. The orientation of the hole, ¢ , cetermines the values
of the constants wnich actually appear in the above equations, so that
the values of A¢ . By and C, are dependent on p as well as on the
regional stress components for a given rock mass.

5. The exceptional cases,

As the author explained in I, the cases ¢ = 0, /2 are not v
covered by the general solution for antiplane strain in a transversely
isotropic medium because the stress functions x (x,y) and v (x,y)
then satisfy independent equations, instead of the mixed equations
I(2.9) and 1(2.10). The result is that components of displacement u
and v (or ur and ug ) are independent of the regional stress components

and 123.

The required results for 1adial deformation due to stress relief
have been given by Berry and Fairhurst (196y) in terms of principal
stress components assumed to lie parallel to the axis of the hole and
normal to it. The derivation of these results is given in this section,
using the notation of this report.

Warta B ot ™, ol T

"3
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The result for an isotropic material can be easily obtained from
either of these results.

5.1 Case ¢ =0

We first show the close correspondence between plane-
strain problems in this case and similar problems in an isotropic
material. This enables us to use the well known plane-strain result
for a stress-free hole in an isotropic material. The correction for
non-zero axial strain is then applied to complete the solution.

e T o s P Y R o S

From I(1.5) and I(5.1), the stress-strain ralations for ¢ : 0
reduce to
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%" b11 B b12°y b b13%,
ey = blZOx + bllcy 4 b13c3Z ,
€ = P1a% ° Py - Pagfy
(5.1) .
2YYz = b441yz '
2sz ) b44sz'
Zny = 2(bll- blZ) Txy .

where the coefficients are given by I(1.3) in terms of moduli and
Poisson's ratios.

For plane-strain, cz = sz = sz = 0 and hence
b
13
o = - — (c -0). (5.2)
2 B3 =Y

€ =4 .0 -4 .0 ,

ACIETIRINPS . are Ry S e

(5.3)
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- 3wﬁy$m’ﬁmw‘}?'x:m:M'tHv* - 4
a
§
i
2 2 '
P R (P LR
n - "u T b, T E
2 . (5.4)
b pa e B L Lo B o
12" %12 7 by, £, VI n

using I(1.3).

Now equations (5.4) nave precisely the same form as the
plane-strain equations of an isotropic medium. It follows that the
same methods of solution are applicable (we have already seen in I
that the stress function is biharmonic), and the actual solutions are
identical so long as the constants of (5.4) are substituted for the
corresponding constants for an isotropic material. The latter are

2
l-v _ l-v I v(dev) v
1 T 20 and 4 12 T VR (5.5)

Solving for 4 and v we have

I
£
S A I s 5.9
201747 1 T he

The general procedure is then to take the isotropic solution,
express 4 and v in terms of LI“ and LIIZ by means of (5.6) and
then to substitute the 4., and 4., of (5.4). The plane-strain solution
for relief of regional stress components o;, % , t 2 around a hole of
radius @ in an isotropic melium gives a radial displacement of

u 2

r l1-v
a g L 919,

+ 2 (o1 - 02) cos26 + 471 _sin2¢ ] .

(5.7)

12

The factor containing the elastic constants can be replaced directly
by Lll by means of (5.5) anc substitution of l;” from (5.4) gives,
for tLe transversely isotropic mecium

gt
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=3

2
13

= - (b, - 5 ) [0, +0, - 2(cl-cz)cosze+ 41

sin26] . (5.8)
11 33 1 2 12

m|::
-

This result is obtained on the assumption of plane-strain, in
particular that ¢, = 0, Since that is true only when the stress
components are related as in (5.2), a correctior term must be added to
(5.8) to take account of the more general case. It was noted in
Section 3 that €, is independent of position, so that we may substitute
in the third equation of (5.1) the values of the stress components at
infinity to determine €t that is (since the effective values correspond
to removal of the regional stress),

e = -(b130l +b .0, +Db (5.9)

z 13% * P33%)-

This strain is due to the fact that the axial stress, g, is greater than
that given by the plane-strain condition (5.2) by a quantity og (say),
and we must now use equations (5.1) to determine og and the additional

strains eg and e‘; which it causes.

By putting o oy =0 in (5.1) we find that

eo eo = b oo
X y 18 "8 °
o)
ez b3302 !
and hence
o] o _ b13
€ = ey = B—- ez c
33

and so, from (5.9) , in terms of the regional stresses,

2
o) o b13
€, " ey —-b13o3-b—— (ol 402). (5.10)
33
Since ¢ ° - eo , the additional strain is independent of 6 and so

induces xa dia%etral deformation of the same value at the hole.
Addition of (5.10) to (5.8) leads to the final result for stress-relief:

14
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=

-~ =A . B cos26 - C sin2¢ , (5.11)
a o 0 0
where
Aot e )il ec | %
b?:s 1
B, = -Z(b11 "5 ) (c1 - 02) , (5.12)
33
be
C -4b, -—) 7 A
o) 11 b33 12
or, from I(1.3):
ol _
S by (3; 9 =v,9;).
_ 2 2 . . A
BO—--El (1 \)Z)(,1 v2) , (5.13)
I .
CO— E(l VZ)TIZ'

1
It should be noted that, for ¢ = 0, the x and y directions are

defined only to the extent that they are normal to the axis of elastic
symmetry.

5.2 Case » =

SR

As noted in I, the plane-strain problem in this case has been
discussed by Green anc Zerna (1954), although the displacement
solution has not been given. However, it is possible to use the complex
potentials given by them, as stated in I(5.31) and I(5.32), with the
general expression tor the complex displacement, to obtain the plane-
strain cisplacement solution. As before, the stress-relief solution is
completed by making a correction for the non-zero axial strain.

-t
i

I'rom I(:.5) and 1(5.20), the stress-strein relations for ¢ ry
are
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Q
=2
Q
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Q
o
Q
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Q

y 18'% 33 137z '
% " b120x ' b13C’y bllcz'
(5.14)
L
2sz - z(bllnblz) Tzx
Zny B b44Txy
expressed in the coefficients of I(1.3).
For plane-strain, ¢ = vy =y = 0 and hence
z y2z ZX
o = -+ .o -+ b o) (5.15)
z b11 12 x WMy "
and the remaining equations become
°x Lllox leoy !
€ = 4. .0 41 4,A0 ' (5.16)

zny N 44Txy !
where 2
b 1l -v
L = b = 12 =
1 ’
11 11 11 E]
P _b12b13=_fz_“_v)
12 13 b11 El 1
16

sl o Ktk S G




- 3 1 2
4o = Pa3 E B

—
—
N
—

(5.17)

b44 = 1/M.

In the notation of Green and Zerna the complex displacement
due to this kind of plane strain deformation in a transversely isotropic
medium can be expressed thus:

u+ iv = 610 (zl) - plﬂ (zl) + 62w (zz) T pyW (zz) , (5.18)

where

S (14 \(1)132-(1-\(1)131 '
8 = (1 YZ)BI' = wrz)l:?2 :

py = (1 *+Y,)8, (I'YI) Bl ;

P, = (Liv)g i (1-v,) 8.

:—j—-— — - 2
L4 , Bj le 4220‘1 / (5.19)

2 2 %
ap =4y, tdbyy [ (4 Bby ) g0, 1
2
2 =g tEby, - L@, 1By ) -0, i,

and
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For problems involving circular boundaries the z, are more
conveniently expressed in terms of new variables C’l ar!d Qz such
that

2
= T B = 1,2.
2, Cj v,a /Cj j

and then (. =(, = ae16 on the boundary (when z = aele). The

complex potentials for the present problem are given in equations
1(5.31) to I(5.33), which are here restated in the form:

Q'z)) = £(¢) , wi() =g(L,), (5.20)
where
— — — — az
£(¢) = A¢-[(1 -v v )A 4 (1-v,v,)A ] - ,
172 2'2 Q(Yl Yz)
(5.21)
g(¢) = A' ¢+ [(l'YlYl)A +(1- Yle)A ] m‘)
and
(a,+1%@, 1) :
A= —5 3 L(iyy) (o2 0)+ 2y, (0,-q) ]
G "%
+ 2_1(a1+1 ) le ’
(5.22)
32A'= - —— [(1+yl) (0 = &) +2v (o)~ a,) ]

1
9 "%
2i 2
+—1(a2+1) T

12

On the boundary , these equations lead to the result

18




g'(zl):=f(aei%

o = = = -i8
o [0-y vy )A- (1 -y, y,)A"] ae
_ Asei®. 172 22

Y17 Y2
(5.23)
w'(z,) = g(ael%

- araai® (1"Y1Y1) As(1- Yle) A g
. ae B ~ ae
YT Y

and so, from (5.18),

e -i6 fu +iv)
a a

] o o, L=y v,) At(1- v, v)) A'] - pzl (1-y v JA4(1-v v,)A"]

-~ 6 A < 5 A" - :
v TR

b2 (5.24)

e = 8L 0 A1y, v )AT] =8, [ 1oy Y)A4(1-y v )A ]
e p1A+ pzA -
L)

Upon substitution of expressions (5.23) into (5.24) the following
result is obtained after some manipulation:

ur+ iue _ 522

: (1-y 2 (1= v,)

2 22
2 [1+(Y1+Y2) Y Vg ](01702)4 2(Y1+Y2)(01‘02)

“2i(l-y Y ) vy yy) T,
-2i . ; _
+e 2014, (04 g)+2(11 Y (-0,

ity )T, 0 (5.25)
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Now from the definition of Y| and vy, in (5.19), they are either
both real, or complex conjugaies. The separation of (5.25) into
real and imaginary parts then follows easily, and we have for the
radial displacement due to plane-strain:

u
?r" A' + B'coslf +~ C'sin2g , (5.26)

where

2

, 2 2 , )
Lzz{[l (Yl' YZ) “Y, Y, l(c:l + 02) Z(Yl“ \rz)(ol ozj

A'= - \ '
(1-v % -y’
. 2422[ (Y1+Y2)(011 )+ (1 v,)(0,-0)) ]
BYS == 2 2 ‘ (5027)
(h'= vl) (1 - Yz)
a4, (1 -vv,) T
oo 220 7MY i

7

4

(1-vp? -y,

Briefer expressions may be obtained (as in the stress solutions of I)
by using the constants

i LR ;%(af”’; Voo kg = m PG e )
Then
A'= - ?li"zz{[ (k- 1)2+ k3(k1+ 1)] (014 02)4 (kl-l)(k1+ ko 1)(01- a,)
B = - 34,04 ke 1){.(k1- (o, o)k * Do~ 02)}, (5.29)
Ct= =2kl kg D mpy

By substitution of values equal in magnitude but opposite in
sign to the regional stress components in the third of (5.14) we 1ind
the constant axial strain,

20




e, =" (blzc1 = b1302 + b1103) , (5.30)

and calculate the additional radial displacement caused by this
departure from plane-strain. Setting o, =g = 0in (5.14) we
find the relations between this and the addit%onal strain components

o) o}
€ and ¢
X

o _ 0 o} (o}
ex blzcx ” ey b13°z ;
N 00 (5.31)
ez 11 2

However, since we are interested in the radial strain in a direction
at an angle 8 to the x-axis we use the transformation

2
€ =e Ccos Q- ¢ sin26=%[e ~e - (e -¢e)cos20] ,
rlox y . X Yy X y

so that, from (5.31),

€
o _ 4 | ) _
° T 2b | [ by~ byg(by,= by j) cos2e].

At the hole this corresponds to the comparative radial displacement

u;)/ a, and so, using (5.30),

1

O — - -
U, == g 59,4 0)39, +D)19)lbye byl ob, g) cos26 .

o121 1372
g (5.32)

By means of I{1.3) this expression can be put into the form

g b gl g
T iE, {(Vl“’z) (o) + gt (v - vy) (g=0))-2(v) - v)) oy

a

J-[(vz-

] »'g)(olJr 02) “ (vl-'vz)z(ol-cz)-Z(vl-vz) 03]coszaj (5.33)

2




which can then be combined with the plane-strain solution given by
(5.26) and (5.29) to obtain the complete solution:

u

il . .
a A90 + Bgocosze 4 CgosinZG ; (5.34)
where
2
2 (Vl‘i' Vz)
A = -1 . ) = e
90~ % {Lzz(kl D7 kgl + )]+ E }("1 %)
vz = vz Vit Y
1 2 1
-i~{422(k1-1)(k1+-k3+1) L (cl-cz)}+ 2t 93 ¢
1 1
2 2
1% )
8 .._%{L (k. -1)(k. +k_+1) - 0.4 0
90 22 1 1 3 El 1 2 (5.35)
i
. Vv, =V V, TV
o e s A N 1 Y2
4{‘22“‘1 Llifle ek & B }("1 %) 2E, 3
Cyy = ~#Lyk5lk kgt mpp
The constant (22 can be expressed in terms of El' vy and k1 thus:
1l - \)i'
L22 = ::—kz_ : (5.36)
11
5.3 Isotropy

The result for an isotropic material may be obtained by letting

= = = = = = \ q
E1 E2 E,v1 vy =V k1 1 and k3 2 in (5.13) or (5.35).

These expressions then reduce to
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A:-— -
(ol+02 vo3).

B - -%(1-\)2)(01-02), (5.37)

. 4 2
ClL= E(l v)le,

which, of course, are the coefficients in the expression

u
a—‘= A +B cosf + C sing. (5.38)

6. Application of the radial displacement. formulae i

6.1 Development of procedure

In each of the expressions for the radial dispiacement, (4.17),
(5.11), (5.34), the result depends on only three parameters which are
constant for any particular hole. No matter how many measurements
of u, are made at various directions 8 in that hole, it is not possible
to gain any more information than that of the values of the parameters
Ag. By . Cy . However, in order to determine the six components of
regional stress, it is necessary to determine the values of six parameters,
To do so, measurements must be made in a second hole with a different

orientation.* .

In each hole, a minimum of three diametral strain measurements
is adequate but more may be made to improve accuracy (see Panek, 1966,
for procedure in the isotropic case). Denoting the three measurements
by suffixes 1,2,3 we have &

u
—r-‘-1-=A+BCOSZG + C sin 28, ,

a 1 1 4
i
—Lee o A+ Bcos 26, + C sin 28, , (6.1) :

a 2 2 3 |
u |
—L‘—-=A+Bc0528 + C sin 28, .

a 3 3

* In some circumstances me surements in a third hole may be necessary:
see note at end of Section 6.2,
23
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The determinant of the coefficients of A, B, C in (6.1) is
4 sin (5] - 6 ) sin (3; - U3 ) sin (65 - 6;) showing that these
parameters may always be determined.

When measurements in two holes, with orientations ¢
ard @, (say). have been made, six parameters, A,. By, Cl, Ay,
BZ' 02 , are available for determination of the regional stress
components. For definiteness, we suppose that 0 <, < ¢ < ”/2 ,
and so indicate the place of the exceptional values of ¢ in the
scheme.

It is important to remember that the regional stress components

in the form O + Gy C3 4 Typ s Tyqar T3 Qre referred to axes fixed
on the axis of the hole and hence will change value as the orientation
of the hole is changed. Before proceeding to solve the six equations
for the regional stress components the formulae for A@’ B¢, C, must
be expressed in terms of components referred to a single system of
coordinates. There are several reasonable systems, but it seems
preferable to choose one in which one axis is an axis of elastic symmetry.
We denote the chosen system by (xR , xR, xR ) and the components

. 3 R il
of regional stress R.,. Then we choose Ox% to be an-axis
of elastic symmetry,”so that it is identical with Ox'{ (Fig. 3). We
could choose OxR to be a geographical direction, or to be identical
with the x,-direction defined for either of the holes (but not by both
unless both holes lie in a plane through an axis of elastic symmetry)
(Figs. 1 and 2).

Let y, be the angle made by the x,-direction of the first hole
tc Oxj ., anc Yy, the angle made by that of the second hole. The
direction cosines, dff = cos (x“i'be) (m=1,2), of the x,-directions
-lefined for the first hole (m = 1) and second hole (m = 2) with respect to
the (xR ) coordinates are

)

m e mo_ m _
d11 = cos wm 7 ci12 siny d13 o ,
m m m

= - i Is = . & , = - in: , .
d21 sin \,mcosqsm, d22 cosy C ¢, d23 smam (6.2)
dm = -sin Yy sin dm =cosy sin dm = c059
51 'm ¢m 2 'm %n° ala m

If we choose OxR to be identical with Ox1 for m = 1 (say), then vy = 0,
with consequent simplification in that case.
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If we denote by c;n. (m = 1,2) the regional stress components
referred to the x} - coordinates and x¢ - coordinates respectively,
tnen they may be expressed in terms of the Ri‘ (the regional stress
components reierred to the x}f - ¢.u ‘inates) by means of the
transformations
o" = d.d R (summed over k, 1) (6.5)
ij ik j4 ki ) ) .
Written out in the original notation for the regional stress components
this gives the expressions
m 2 2
= v in § + in ‘o
cl Rllcos o + Rzzsm Vi 2R1251n4;mcos e
m Z 2 2 2 2 2
= 1 + + _Si -2 in, | g
02 Rllsm wmcos q)m Rzzcos wmcos qsm Rwsm @m Rlzsm mcos,;mcos ﬂm
o i + i i
2R23coswms1n¢mcos¢m 2R13smwms1n¢mcosq§m ;
m 2 2 2 2 2
= ' i : i +
9 Rllsm wmsm ¢m +R22cos wmsm ¢m R33cos qsm
2
- i 1 + ' i - i i
2R1251nwmcos¢msm ¢m 2R23cos¢ms1n¢mcos¢m 2R13smwmsm¢mcos¢m ,
‘Tm = - R, .siny cosy cos¢p + R, ,siny cosy cosp + R, ,cosg (cos2 = sinzv' )
12 11 ll’m m m 22 m m m 12 m ‘l'm nd
= stsmwmsmq)m - R13c_oswmsm¢m ’
(6.4)
m - R sinz sing +R cos2 sing cos¢ - R_,sing cos
TZJ 11 wm ¢m 22 wm ¢m m 83 ¢m ¢m
- 2R.,.siny cosy sing cosg +R,. COs (coszq) - sin2 )
12 Wm llIm om ¢m 23 Wm m <15m
+ R, .sin (sin2¢ - cos2 )
13° Wm m ¢m'
'rm = - R . siny cosy sing +R,,siny cosy sing +R ,sing (coszw -sinzw
13 11 m m m 22 m m m 12 m m n)
+ R23 sin wmcos¢m + R13coswmcos¢m
25
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m
The exceptional cases M= 0, ®, = /2 bring simplifications,

particularly if 'Ul or “JZ are chosen conveniently.

: . 1 : . <

(i) 2, =0; "!.1. =0 . Inthis case the x; - dxrectlonils c'hose.an
arbitrarily in the plane of symmetry and the x,-direction is
chosen to be identical with it. Then, from (6.4)

9, = Ry v 93 = Rype 93 = Rysy /

(6.5)
1 . 1 J
T2 T Rygr T3 TRy T3 T Ryg

By = E, R ) *Ryp = WRy3). ’\]
T |

B, = o) (L-vy) (R = Ry,), (6.6)
_ _ 4 2

Eg = E, (1-v) )R, -

(i) ¢, = TT/2 g wz =0 . This choice of wz means that the

xR - direction is in the plane of cross-section of the hole,
and the xg - direction coincides with the axis of the hole.
Since the x} - axis for ¢; = 0 in (i) above can have any
direction in the plane of elastic symmetry, the choice of

¥ = 0 in each case does not prevent the selection of a
common x? - coordinate system. From (6.4), we have then

(6.7)

and the formulae (5.35) become, using (5.36),
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1 -»
1 2
P o L - .
90 aL, 2 “k 1’ thalkp o D]+ v +v)) 7§ Ry +Ry5)
1
l -V v, t vV
1 f 1 2 2 1tV
- — -1 - . L -
At / 7 k=D k4], sz(Ru Rygh* —25— PRyp -
1)K ]
e -
_ V) ) 2 2 (6.8)
B90 4E1 kz (k1 1)(k1+k3+1) +vl -vz }(R11+ R33)
1
2
o] (1_\)1 k. + Dk +k + D+ - v) (R .- R..)- ot I
4512 2 ] 173 1~ V2 10 38 2E, 22,
)
-V )k, (k.+k +1)
= R M -
90 2 13
2E K]

Unfortunately, we cannot make appropriate substitutions (as we
have for ¢ = 0, m/ 2 ) in the expressions A_, B, C¢ (4.18),
0 <¢ <n/2 , to obtain formula with explicit deperidence upon the R
because their dependence on the regional stress components arises 1n
a complicated manner through the a o and A (and, more s1mply through
€, ). The dependence of the a_, on o, o = 3 can be
found only by solving equations 1(4.2), and that is no% practxcable until
numerical values can be assigned to the coefficients (calculated from
the elastic properties of a particular material with the appropriate ¢ in
each case). The A can then be calculated from 1(4.12). The component
0, is introduced through €, which is given in terms of stress components
by (3.2). In a practical case, a 5 ! Av and €, would then be expressed
in terms of the R.. , using the appropriate values for the angles Y and
¥y, for each hole in (6.4).
The elastic parameters G and H  also depend upon 3 , and
the values appropriate to o an must be calculated. All the equations
are linear in stress components ané when all the substitutions have been
made we obtain expressions Al' B.,C. for ¢g=9¢.,, = ',“1, linear
and homogeneous in the stress components le' and a similar set A2 ,
C for ¢g=9¢, ., V= VZ If we denote by A‘f etc. the experimental
vglues determined through equations of the form of (6.1), we can write
the result as six equations thus:
27




1 1 _ e

3 Ry} ¥ 3Ryp * 3Ry 3 Ry v ARy FAR), = A

1 1 1 1 1 1 e

DiRy) + ByRyy  DyRyq 4 ByRyy + bRy + DRy = B

1 1 ] T

C1Ry1 ¥ CaRyp 1 C3Ryg +C4Ry3 + CRyy +CRyy = C)
a_R +a_R +a.R a R +a2R +a2R =Ae !

1Ryp TRy * 4R35~ 3Ry + 3Ry AR 2

2 2 2 2 _ e

biRy) = ByRyy # baRyq = byRy 5 + bRy i BeRy = B,

2 2 Y -

CiRyp *CRyg *C4Ry3 + CyRy3 + C Ry +CR)\ = Cy

So long as the matrix of coefficients a1 etc. in (6.9) is
non-singular, the equations may be solved for the R,.. For ¢ = 0,
¥, = 0 expressions (6.6) are substituted for the first lhree expressions
in (6.9). If =T/y . ¥ =0 expressions (6.8) are substituted
for the second three of (6.9). A complete solution cannot be obtained
by having ¢, = 0and 9, = T’/2 simultaneously, since Ry3 occurs in
neither (6.6) nor (6.8) and the matrix of coefficients of the six
equations is singular: by omitting an equation a solution could be
obtained for the other five components. It does not seem practicable
to determine whether there are any other conditions for which the
matrix is non-singular, However, the possibility of this occurring
must not be overlooked and, indeed, steps should be taken to ensure
that the matrix is "well-conditioned" in practical applications. This
could be done by evaluating its determinant at a selection of possible
relative orientations of the holes, and rejecting those giving the
smaller values. One would be especially suspicious of holes at
right-angles to each other,

6.2 Summary of method of application

(1) The constants k__ are evaluated in terms of the b__ (assumed
known) for a pafrsof values ¢1 and P through f(sl .6). The
constants 4 .. K., A . M,/ Y, 6\)’ T, ! 6\)\)' Moy Ll ' sz. Gv'
H, (v =1,2,3) are then determined for each of ¢ and ®. by
means of 1(2.6'), 1(2.17), 1(2.18), 1(2.20), I(4.6)l, 1(4.8].
1(4.9), (2.8) and (4.16).
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(2)

(3)

(4)

(5)

(6)

(7)

Note

The equations I(4 2) are solved for a;g. a5, 3,4, @30, 230 in
terms of © e , using the coefficients
appropriate tlo eag‘n of {ﬁe va? es ¢ and ¢y in turn, These are
substituted in I(4.12) to obtain the values of A, (v=1,2,3)
(using the appropriate coefficients for each of ¢ and ¢, ) in
terms of Oys 9y 712, T3 T3 The values of the k for ?
and $9 are used in turn in (3.2) to obtain the values of €, in
each case, in terms of °1' 0o/ 0.4 T3.

The orientation of the x R - axes in the plane of elastic
symmetry is selected. llh % - direction is defined (Figs. 1
and 2) by the intersection of a cross-section plane of the first
hole with a plane of elastic symmetry, and {§, is defined as the
angle it makes to the x}f- direction; “"2 is degmed similarly.

The values of the a, A and e, for each of ¢ and )
are expressed in terms o¥ the Rl] by means of (6.4), using the

Ym appropriate for each hole.

The resulting expressions for a, and €, for

¢= ¢ L= wl are substituted in ?4 18) w1t¥1 coefﬁments
appropuate to ¢, and form the first three expressions in (6.9).
A similar process for ¢ = @9, U=y, gives the second three
expressions. If ¢; , the expressions (6.6) can form the
first three of (6. 7) 1f 8, = /5., (6.8) can form the second three
of (6.9), so long as the x;' - coordinates are appropriately
selected.

i

The determinant of the coefficients of the R1 in the resulting
set of expressions is evaluated to ensure Lhat it is not zero
or very small,

If this test gives a satisfactory result, stress-relief tests

are made in boreholes at the selected angles. Diametral
measurements are made in three directions to obtain a set

of equations of the form (6.1) for each borehole. From the
first hole we calculate dimensionless parameters AY, B C?
and from the second parameters A§, B, C§ . These form the
right-hand sides of equations (6.9) which can now be solved
for the regional stress components Rij'

If the ground is only weakly anisotropic it is probable that
the equations (6.9) may not be well-conditioned since, as
shown by Gray and Toews (1967), and also by Bonnechere and
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Fairhurst (1968) with reference to the "doorstopper" method,

the six equations obtained from any pair of holes are not
independent when the ground is isotropic and measurements

in three holes are necessary. The arguments of the above
authors do not apply to ground which is only transversely
isotropic, although instances of dependence between the six
equations {6.9) other than that notad in Section 6.1 (p

9, = ”/) may exist. If the matrix of coefficients of (6.9) is
zero, or close to zero (either because of weakness of the
anisotropy or because of limitations in choice of hole-direction}, .
it will be necessary to use a third hole (p = 83, V=1, ) in
addition, and the results may be processed by methods discussed
by Panek (1966) and Gray and Toews (1967).

7. Strain in the wal] of a stress-relieved borehole

Development of very small strain-gauges makes it feasible to
measure the strain in the wall of a borehole as the stress is relieved.
This technique could be used to augment information obtained from the
older method, and possibly to allow determination of the regional stress
tensor from measurements in a single borehole.

The components of strain in the wall of the hole, r = a, in the
(r, 8, z) coordinate system are €, , ¢, Yoz * Of these ¢_ is

Z Z
constant and is given by (3.2), while

€. = ¢ sinZB-ZY sinfcosh + ¢ cosze ’ (7.1)
B X Xy y

Yo yyzcose- szsine (7.2)

7.1 General case, 0 < ¢ < TT/2

In this case €t € v Y '+ Yyp are given by equations
(2.3) to (2.8) and ¢, by (3 59’ w1th the W (z) - [WV(zv) ]1

as given by (4.9). From (7.1), (2.3), (2.4) and (2.5), we find that

3
e=§' [MW(2)+I\ZVT/(2)]+(Ksin26+Kcosze)e (7.3) .
S AV VoV v 1 2 "
v=1
where 9 2
Mv= lesme + szcos 6 - L6v sinfcosf , (7.4)
30
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L1 ] L2 and L6 being given by (2.8). For the boundary of the
hoYe, = a, we' \ise the value of [ Wv(zv) ]1 , given by 1(4.13),

so that then

(aonv - Av) sinf - i (aonv + Av ) coss® (7.5)

vV sing - xvcose

From (7.2), (2.6) and (2.7), we find that

3
Y N W (Z
L W) e KW, (2] +x

Y

e cosf €, (7.6)

4

where

= % H = i
Nv £ (L4Vcosc L Vsme ) . (7.7) ]

5

L4 and L5 being given by (2.8) , and Wv(z\) by (7.5), forr = a.
In both (7.3} and (7.6). the value of ¢, is given by (3.2):

€ =-(kl3c +k.,.0, +k..c, + k

2 LR s 34722 ) - (7.8)

Equations (7.3) to (7.8) give the distribution of strain in the
wall of the hole as a function of the elastic constants, hole orientation
and regional stress tensor. The dependence of av and A on the
components o: regional stress must, in practice, be calculated by the
methcas indicated in Section 6.

7.2 Case =20,

In the case =0, TT/2 , the plane deformations and the axial
shear wefo.n:ations are "uncoupled" and so €5 and Yq, May be
calculated as separate problems.

Transformation of the plane-strain relations (5.1) to the (r,3,2)
system of coordinates gives the relation ]

€ = P10, ¥ b9 b0, |

but since cr O onr =a, we have

onr =a (7.9)

€

b c4b1

g~ Fi1% " P13t
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where b11 and b13 are given by I(1.3).

The values of and g, may be obtained from I(5.5) and
I(5.7) with the signs changed (since here the regional stress is

being removed):

9= =0, +09,) +2 (g, -0,)cos2s + 4 ,sin26 , (7.10)

bl3
o, =-c3--b-;; [ 2(01 -02) cos28+ 4 1

12sin26 ] . (7.11)

! Substitution of (7.10) and (7.11) into (7.9) give the result
forr =a,

b1
g -bll(cl+ 02) —b13c3 + 2(bll - —b;)[(ol - cz)cosze +2 lesmze ]

j (7.12)
From I(1.3) this may be written

E
- 2 2 L .
Ejeg=-(0,* o)+ vyo, + 201 E, vy ) [ (0)- 0,)c0s28 + 27 ,sin28] .

(7.13)

By changing the sign of 1(5.19) (because the regional stress
is removed) we have the component of shear stress in the wall of
the hole:

sinf) . (7.14)

Tag = -2 ('rzscose -7

Bz 13

(From (5.1) (suitably transformed) we have the relation

2YE)z - b44T92 )
and so, from (7.14)

Yy, = b44( ¢l3sm6 - 723cose) . (7.15)
i or, using I(1.3),
w o 3 -
| MYez = Tl3sm9 1230059. (7.16)
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The remaining component, <, is given by equation (5.9), which,

by use of I(1.3) can be written:

El
)T 9 (7.17)

E. ¢ =v2(ol+o ;

1z

Equations (7.13), (7.16) and (7.17) give the components of
strain in the wall of the hole directly in terms of the elastic constants
and the regional stress components referred to axes fixed on the hole.

7.3 Case ¢ =TT/2

A slightly different procedure is used for g = TT/Z in order to
avoid the labour of transforming the equations (5.14), which apply
to this orientation of the hole.

The stress components o, ., 0, T are derived from components
referred to the (r, 8, 2) coordinategby the transformation

2 . 2 .
ox= crcos 6+0.sin 6§ - ZTr sinfcos6 ,

8 8
. 2 Z .
o =0sin"8+gcos 9+ 2 1 sinfcosh , (7.18)
y r §) ro
= (0 - 0,) sinfcosB - T (cosze = sinze)
Txy r 6) ) :

In the present case, forr=a, o, = 79 = 0 , and Og is given by
1(5.40) and 1(5.41), and o, by I(5.46) both with the signs of the
regional stress components changed (since they are being removed,
not applied).

From (5.14)
&% ~ bllox * bl3cy ¥ bl?.oz !
ey - b13ox ; b33CJ)' er1302 !
Zny- b441xy'




s g

Substitution of (7.18) in (7.19) and use of (7.1) gives the result

sinzecosze +b 00549 +b sinze cosze)

N . 4
eg = b sin 3+ 2b) 33 44

‘ . 2 2
i oz(blzsm 8+ b13cos 3). (7.20)

From I(1.3) and I(5.46), this can be written
E E
E.e =0 sin46 -2y sin29c0528 + —100549 + —L sin28c0528 -

1°6 G[ 2 Ez M

. 2 7 .2 2
- (vlsm § + v,cos ) ] + (vlsm § + v,cO0s 9)(03 v, 9, vzoz) )

(7.21)

where, from I(5.40 ) and I (5.41)

H.g=-(0+ 02)[ ky(k + 1)+ (k- n? - (k)= ky*+1)(k;-1)cos28 |

—(ol— 02)(k1+ k, +1)( kl- 1 -(kl+ 1)cos26 ] +2 712k3(k1+k3+ 1)sin28 ,

3
(7.22)
2 2 2 2
H = (k] +2k, +1)-2(k]-1)cos28 + (k1—2k2+l)cos 26 (7.23)
To calculate the component Yez we use (7.2) in conjunction
with the relations from (5.14):
sz - %b44Tyz'
(7.24)
Yz = 17 7 P10) Ty,
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and the expressions I(5.66) for 7 and 7 , with signs changed.
. yZ X2
The result is

(I +t)(7,.sind - tT,,Ccos8)
_ 15 23 2
Ye = T 2. 2 2 [ £b, jcos™s - (b
sin 9+t cos 9

ol
ll-blz)sm 6 | (@ 29)

where, from I(5.68)

b B
2
(= a4 = —1 . (7.26)

2M(1 +v.)
2 -
/ (b11 bIZ) 1

Using I(1.3) and (7.26), this may be written

E s (1 +v1) (1 +1t) (T1351n8 - t7,.,cos8) . (7.27)

1% 23

The axial strain is given simply by I(5.3), which may be written ,
by means of I(1.3):

Elez = —03+v101 +v202 . (7.28)

Equations (7.21), (7.22), (7.23), (7.27) and (7.28) give the
components of strain in the wall of the hole (for ¢ = TT/2 ) directly
in terms of the elastic constants referred to axes fixed on the hole.

7.3 Isotropic Material

The results for an isotropic material may be obtained simply
by puttingE} =E, =E, vi vy =v, M =u=3%E/(1 +v), in (7.13),
(7.16) and (7.17). The results are

) 2 .

Eee == (gl+oz) + \)03+2(1 vo)( (<Jl 02)c0526 + 2 'rlzsm28 ]. (7.29)
EYBZ = 2(1 +v) (Tlasine = T23cose ) (7.30)
Eez = \)(ol+c52)—c33 . (7.31)
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7.4 Measurement

In order to compare the results of this section with measured
values we require the normal components of the strains calculated
above resolved in any direction tangential to the wall of the hole.
Let ¢, be the normal component of strain in the wall in a direction
at an angle w to the positive 3-direction at any point then its

value in terms of ee. €, ygz at that point is given by the transformation
e =@ coszw + € sinzw + 2y, sinwcosw. (7.32)
w ] z Bz

If a triple straii:-gauge rosette were used,T}Nith %Tuges atTT

equal angular intervals, then the three angles 0, /3 A0/ Onr

8 6’

n/z, STT/6 would be obvious choices for w .
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